Implementing componentwise Hastings algorithms
نویسندگان
چکیده
Markov chain Monte Carlo (MCMC) routines have revolutionized the application of Monte Carlo methods in statistical application and statistical computing methodology. The Hastings sampler, encompassing both the Gibbs and Metropolis samplers as special cases, is the most commonly applied MCMC algorithm. The performance of the Hastings sampler relies heavily on the choice of sweep strategy, that is, the method by which the components or blocks of the random variable X of interest are visited and updated, and the choice of proposal distribution, that is the distribution from which candidate variates are drawn for the accept–reject rule in each iteration of the algorithm. We focus on the random sweep strategy, where the components of X are updated in a random order, and random proposal distributions, where the proposal distribution is characterized by a randomly generated parameter. We develop an adaptive Hastings sampler which learns from and adapts to random variates generated during the algorithm towards choosing the optimal random sweep strategy and proposal distribution for the problem at hand. As part of the development, we prove convergence of the random variates to the distribution of interest and discuss practical implementations of the methods. We illustrate the results presented by applying the adaptive componentwise Hastings samplers developed to sample multivariate Gaussian target distributions and Bayesian frailty models. c © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Spatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملComponentwise accurate fluid queue computations using doubling algorithms
Markov-modulated fluid queues are popular stochastic processes frequently used for modelling real-life applications. An important performance measure to evaluate in these applications is their steady-state behaviour, which is determined by the stationary density. Computing it requires solving a (nonsymmetric) M-matrix algebraic Riccati equation, and indeed computing the stationary density is th...
متن کاملDirectional Metropolis–Hastings algorithms on hyperplanes
In this paper we define and study new directional Metropolis–Hastings algorithms that propose states in hyperplanes. Each iteration in directional Metropolis–Hastings algorithms consist of three steps. First a direction is sampled by an auxiliary variable. Then a potential new state is proposed in the subspace defined by this direction and the current state. Lastly, the potential new state is a...
متن کاملAn interval algorithm combining symbolic rewriting and componentwise Newton method applied to control a class of queueing systems ∗
The idea of Componentwise Newton Operator has been presented in [9]. It seems up to now not much attention has been paid to this concept. In this paper we present properties of the Componentwise Newton Operator and show how they can be used in numerical algorithms. It seems they are especially important when transforming the problem by some symbolic methods, based on the computation of Groebner...
متن کاملOn directional Metropolis-Hastings algorithms
Metropolis–Hastings algorithms are used to simulate Markov chains with limiting distribution equal to a specified target distribution. The current paper studies target densities on R. In directional Metropolis–Hastings algorithms each iteration consists of three steps i) generate a line by sampling an auxiliary variable, ii) propose a new state along the line, and iii) accept/reject according t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2005